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Abstract
Two factorial experiments with possible outliers (John (1978)) are
reanalyzed by means of robust regression techniques. We show that using
M-estimates of regression results in efficient analyses which are easier

to implement than the methods proposed 'v John.

Key Words: Factorial experiment, outlicrs, robustness, M-estimates

This research was supported by the Air Force Office of Scientific Research
under Contract AFOSR-75-2796,

AIR FORCE CFVICE OF SCIENTIFIC RESEARCH (AFSC)
ROZICE OF TRAMSMITIAL TO DIC

This techriont repsrt has been reviewed and is
approvac .ot wubl.e relsase IAW AFR 190-12 (7b).

Distribution is uniimited.
A. D. BLOSE
Techaicul Informetion Officer

o i TSN




:
1. Introduction
In a recent paper, John (1978) discussed the effects and detection of ;
outliers in factorial experiments. His methods were based on least squares
methodology and can be quickly swmmirized as follows. Consider the usual
lincar model |
Y=XB+g . k
If one suspects that m outliers are present, then the model could be written 1
as m
1=Ni_**,2<*iii*r-» :
i=1
:
where d, is a vector with 1 in the row corresponding to the i-th suspected
outlier and 0 elsewhere (i = 1,2,...,m). The presence of outliers would then

be tested by Hy: 0 = 0. However, the percentage point . which one would
compare with the F-statistic F* should not be the usual upper a percentage
point of the F distribution since the observations being tested have the most
extreme residuals.

John then discusses a simple modification when there is only one suspected
outlier (m = 1 — use the upper o/N percentage point of the F-distribution).
For two suspected outliers (m = 2), a fairly deep analysis is required, including
the use of simulation. For m - 3, the method becomes even more detailed.

At best, the type of analysis presented above is messy, time-consuming and

complex. The method of determining the percentage point F, is neither unified

nor written as a simple algorithm, and outlier rejection itself requires skill *

and care. Practicing statisticians with deadlines to mect will likely not have ‘F
3 the time, inclination nor cnergy to do such an analysis, while the common naive Z H
users of canned statistical programs (such as SPSS) will not have the technical E %
competance to do the analysis, if indeed he or she even bothers to look for =
outliers. e |
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The basic difficulty is that least squares is sensitive to outliers, which

can drastically change parameter estimates as well as disguise significant

effects; this is amply 1llustrated by Joln's first example (see Section 3 below).

g

In order to improve the quality of the mass of statistical analyses, what is

needed are not complex, i ko procedures for detecting and modifying outliers,

but rather procedures which are insensitive to the presence of outliers (see

Cook (1977) for a treatment of outliers in independent variables in regression).

-

Ideally, such robust (non-least squares) methods should give results (for most

problems!) which are similar to those obtained by outlicr detection and modifi-

cation procedures. The recent statistical literature abounds with proposals

to attain this goal, the most popular of which are Ilber's (1964, 1973, 1977)

M-estimates.  This rather intensively studied class has been specifically
designed to be insensitive to outliers and to retain high efficiency when the
errors arc heavicr-tailed than the nomal, two properties not possessed by
least squares. The basics of M-estimates are reviewed in Section 2. In
Scction 3 we apply these methods to John's first example, while in Section 4

we discuss John's second example. We find in both cases that one pass through

a robust regression program based on M-estimates yields results closely similar
to those obtained by John's complex analysis.

Maniel and kood (1971) and Andrews (1974) analyze a data set in a regression
context. The former use least squares and, decide (after very detailed analysis) ;
that there are three outliers. Andrews uses robust techniques similar to those
presented here and shows that the decision favoring threc outliers can be reached ;

in a much easier and more routine fashion. Thus, the advantages of robust ;

technigques are not limited to the factorial experiments analyzed herein.




3 4
2. M-estimates of Regression ;
]
least squares estimates minimize £
n
(z.1) iz,]s‘(()’i"_(jf’)/”) ’

2
where p(x) = 'x”. The quadratic form of ¢ is what makes least squares sensitive

to outliers. This can also be seen if one defines y = n', for then one solves

—
poss

1

o

hllyv. ~x.R : = '
lv(()l L‘,l")/J)xi ) ’

where for least squares ¢(2) = Z. In order to achieve robustness against outliers

and high efficiency for distributions heavier-tailed than the normal, Huber

(1964), Andrews, et al (1972) and Harpel (1974) suggest that Yy be a bounded
function, and that scale be estimated in one of two ways:

(Proposal 2) Solve simultaneously (2.2) and
(2.3) mp) el (g -x8)/0) = Bl ()
. ] W ((yy-x;B)/¢ v, (2)

the expectation being under the standard nommal,

(2.4) median absolute residual

o MAD) o = /.6745

from median

(This is asymptotically equal to one for the normal model.)
In both cases, the solution is found iteratively. One chooses a starting value s
for -, solves (2.2), then updates © by (2.3) or (2.4), etc., continuing until
convergence.  Algorithms arce available in Huber (1973, 1977) and Dutter (1976);
the author has adapted these algorithms for use in the SAS computer programs
(a card deck is available upon request). TIn neither case is the computation
burdensome.

The typical choices of ¢ are

Huber's Y(x) = -p(-x) = max(-k, min(x,k)) , with k generally taken

as 1.5 or 2.0,

"
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Hampel's  ¢(x) = -y (-x)
= X 0 <x~-a
= 3 a<xc<b
= u%% b:-x-=-c
=0 X - C
Andrews'  )(x) = -y(-x)
= sine(x/c) 0 <x <cm
=0 X 2 Cm

The constant ¢ is often taken as 2.1.

The fact that Hampel's y and Andrews' y both redescend to zero suggests

(Hampel (1974)) that they give no weight to gross outliers, while Huber's y

will give some weight to these outliers but not nearly so much as least squares.

The redescending y functions (unlike Iuber's §) can have problems with conver-
gence; for this reason we adopt the convention of first estimating B by fuber's
method and then using at most two iterations of the algorithm for Harpel's and
Andrews' methods. 1 all these cases, under proper conditions, the robust
regression estimate @R of £ 1is asymptotically normally distributed with mean

£ and covariance matrix which can be estimated by
(2.4) 5%t e )/ e 1o
where the standardized residuils are

ro= (y;-xR)/0 .

Huber (1973) and Andrews, et al (1972) show in simulation experiments that
the estimates ’é’R are genecrally more efficient than the least squares estimates,
they are only slightly more variable than lecast squares for the normal model but

are considerably less variable for hcavier-tailed models.

B ™, i TR



'~y I A e & N T A A AT A AN S e RO 4 AP B

w

Inference about the parameters can take at least two forms, both based on
the approximation (2.4). Schrader and Hettmansperger (unpublished) suggest an
analysis of the usual drop in sum of squares statistic using yp(ri). Bickel
(1976, discussion section) suggests the approach used here. Let

-3 B
A=n ) ' (ri)
1

l--

n=14+ (p/M(1-2)/x .

The term n is supgested by luber (1973, ejguation ) as a variance inflation

factor for (2.4) if p/n is not small. Define ;ocwdo-oo e

=

Y, = x;8 + now(ry)/x .

Then, the least squares estimates for the model Y = Xg + ¢ are exactly BR
(this follows from (2.2)). Bickel suggests that asymptotically correct tests
can be obtained by defining the psceudo-values and using them in convent ional
least squares packages.

In the examples below, we used o given by (2.3); for Iuber's ¢y we took

k = 1.5, for tlmpel's a = 1.5, b = 3.5, ¢ = 8.0, while for Andrews', ¢ = 2.1.

3. First ixample

John's first example is a 3 - fractional veplication of a 34 experiment .

The effects of each factor are split into lincar and quadratic components

(AL, AQ, BL, BQ, CL, CQ, DL, Q) and three interactions are formed by multipli-
cation (ALBL, ALCL, BLCL). Observation 11 is a suspected outlier; the predicted
values and residuals for the four methods are given in Table 1. In Figure 1

we present schematic plots of the residuals for the four methods (sce Tukey
(1972)). The length of the box corresponds to the interquartile range, the

length of the tails is described by the verticle dashed lines, and potentially

serious outliers are indicated by the symbol '*'. The obvious conclusion from
Table 1 is that the Hupel and Andrews method are particularly robust in that

their predicted value for observation 11

poors ¥ N




b s

e

G ok e

(i) 1s close to John's refitted value;
(ii) hardly changes when the original obscrvation y - 14 is replaced by

the refitted value y = 02,33,
From Figure 1 we see that the robust methods fit the data much better than
does least squares, again indicating the value of th e procedures.
In Table 2 we present significance levels for the effects using the

original observations and then using the refitted observation 11, The striking

features are that
(1) The lmpel and Andrews methods give in one pass on the original
observations cssentially the same analysis as does John's niore
complex refitted data;
(i1) the significance levels of the llampel and Andrews methods do not
change to any large cxtent after observation 11 is modified.
We conclude that for the 34~1 example, the robust regression methods compare

favorably with John's method. The significance levels are similar and the

robust methods are, in general, considerably easier to implement.

4. Second Example

The second example John uses to illustrate his method is a confounded 2

experiment, the block effects confounding the highest order interaction. After

lengthy analysis he concludes that two suspected outliers are not really outliers

and should not be refitted. In Table 3 we present signilicance levels for the

four tests, while in Figure 2 the schematic plot of the residuals is given.

The major difference between least squares and the robust estimates exhibited

in Table 3 is that the latter show a main effect in B significant at the .05
level, while for least squares the significance level is approximately .13.
Although John's analysis suggests that there may well be no grose outliers, we
see that the trcatment combinations ad and d are sufficiently discrepant from

the others so as to inflate the lecast squares mean square crror and thus

The Hampel and Andrews

obscure what appcars to be a significant main effect.
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methods also find the BE interaction to be (molerately ) significant,

In the previous section we found that a pross outlier can radically
affect a least squares analysis, while having a much smaller effect on the
robust methods. In this exanple we have seen that slightly discrepant obser-
vations (perhaps due to a distribution heavier-tailed than the normal) can

inflate the least squares mean square error, causing it to lose cfficiency.

S. Discussion

The examples made clear that there is mich to be gained by using M-estimates
of regression. The treatment of designs (with possible outliers) by these
methods is efficient and easy to implement. The quality of statistical analyses
will be greatly improved by routine use of M-estimates as one of the statistician's

tools.
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Predicted values and residuals for observation 11 in the 37 ° experi-

ment, based on the original observations. John's refitted value is

62.33.

Least_ Squares  fHuber ampel Aidrews
Observed value 11 14 14 14
Predicted value 46.2 857 57.7 59.4
Residual S TN =107 43,7 -45.4
Refitted value 62.33 62.33 62.33 62.33
Predicted value after refitting 62.33 61.2 01.2 61.6
Residual after refitting 0 12 1.1 0.7




Table 2

Significance levels for the 3 1 experiment using the four methods.

Blank values indicatc a significance level greater than 0.]10.

‘-Origi'ml Observations (vy; = 14) i Modified Observations (\11 = 62.33)
Effects | Mthods (,' Methods
il,cast Squares Huber llmpel Andrews = Lcast Suares Huber Hampel Andrews
« AL : .04 .00 .00 .00 .01 .00 .00 .00
AQ ; .02 .01 .01 L0 .00 L0l .01
BL : .10 .08 : S .06 .07 0
1 9) : .06 .09 .07 .10 .10 (.11)
o | ;z
o | 05 .06 '\ .03 02 .03 .04
mo |
£} ALBL ‘
BLCL | WO RS S R .00 .00 .01
*‘
\I/’;(leﬁéctcd 46.22 55.70 §7.78 ~ 59.55 | 62.33 61.20 61.17 61.60 i
i




Table 3

Significance levels for the confounded 27 experiment.

indicate a level greater than 0.10.

Source least Squares

A .01

(@]

.03

D .00

Blocks
AB
AC .04

AD

b Lol

Al .04

BD

BE

CE (-11)

DE

.00
05
.01

.00

.04

.00

.06

[upel

.00
<02
.01

.00

(.11)

.04

.00

.09

<07

Blanks

Andrews

.00

.08

.00

.06

40

SV 0
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) Figure 1
Schematic plots for the residuals in the ub-u experiment using the original observations.
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Figure 2

5 ” ; 5 ¢
Schematic plots of residuals for the four methods in the confounded 27 experiment.
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